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Perovskites  have  been  widely  utilized  as  active  materials
in  various  optoelectronic  devices,  e.g.  light-emitting  diodes
(LEDs), photodetectors (PDs), and solar cells (SCs), etc., due to
their facile processability and outstanding optoelectronic prop-
erties,  like  high  optical  absorption  coefficients  (~105 cm−1),
high  carrier  mobilities  (~10–103 cm2/(V·s)),  long  carrier  life-
time (~1–10 μs),  long carrier  diffusion length (1–100 μm) and
tunable bandgaps (~1.17–2.88 eV), which enable them to deliv-
er a comparable performance as traditional inorganic semicon-
ductors. Perovskite LEDs offer 12.2%, 22.2%, 28.1% and 12.8%
EQEs for white LEDs[1], near-infrared (NIR) LEDs[2], green LEDs[3]

and  blue  LEDs[4],  respectively.  The  efficiency  for  perovskite/
Si tandem SCs reaches 29.8%, which is greater than that for sil-
icon single crystal-based SCs (26.1%) and that for thin-film crys-
talline  silicon-based  SCs  (21.2%)[5].  Moreover,  the  specific  de-
tectivity for Sn−Pb perovskite-based PDs reaches ~1012 Jones
at 1000 nm, which is  much greater than that for  germanium-
based  PDs  (~1011 Jones)[6].  Here,  we  highlight  other  applica-
tions in neuromorphic computing, synapse devices and ultra-
sound imaging[7−9].

The  memory  and  central  processing  unit  in  traditional
computers  based  on  von  Neumann  architecture  are  separ-
ated,  and  the  mismatch  between  the  processing  speed  and
data  transmission  speed  causes  difficulty  in  solving  fast  pro-
cessing and storage of enormous data in face of the digital re-
volution[10].  The  neuromorphic  computing,  inspired  by  biolo-
gical  neuromorphic  system,  is  composed  of  devices  that  act
as both storage and processing unit,  and it  can process large
amounts  of  data  in  parallel  and  simultaneously  deal  with
memory  wall[11].  Various  materials  have  been  applied  in
plastic  synapse-like  devices  to  simultaneously  perform
memory  and  processing  functions  in  neuromorphic  comput-
ing,  such  as  memristor,  phase-change  materials,  perovskites,
etc.[7, 12, 13].  Perovskite-based  synapse  devices  have  recently
gained  popularity  due  to  low  power  consumption,  fast  re-
sponse,  optical/electrical  tunability[7, 14−18].  Han et  al.  com-
bined  CsPbBr3 quantum  dots  with  pentacene  to  make  a
photonic memory (Fig. 1(a)). This device showed the character-
istics of optical programming and electrical erasing (Fig. 1(b)).
Multiple  synaptic  functions were demonstrated and could be
further applied in image identification and classification[7]. Con-

sidering  the  practicality  and  accuracy  of  perovskite-based
synapse devices, more efforts should focus on precise and lin-
ear  tuning  of  synaptic  resistance,  co-optimization  with  al-
gorithms, device stability, etc.

In  addition  to  using  photoelectrically-controlled  variable
resistance  of  perovskites  to  develop  synaptic  devices,  per-
ovskites  also  find  applications  in  communication.  High-per-
formance  storage  and  communication  devices  with  high
throughput, low power consumption and fast response are de-
sired  to  meet  the  requirements  of  information  explosion  in
modern society. Chang et al. verified a difunctional device com-
posed  of  Ag/CsPbBr3 QDs/ITO  as  both  resistive  random-
access  memory  and  light-emitting  electrochemical  cell  by  in-
verting  the  electrode  (Fig.  1(c)),  and  then  inversely  connec-
ted two devices  in  series  to  achieve light-emitting memories,
in which one as memory for coding and the other as light-emit-
ting  electrochemical  cell  for  reading  (Fig.  1(d))[8].  This  design
not only solves high signal transmission delay and power con-
sumption present in separated devices, but also increases the
capacity and privacy of signal transmission. Furthermore, mul-
ticast  mesh  network  and  composite  device  structures  should
be designed for further improving their usefulness.

Apart  from  optoelectronic  properties,  the  photoacoustic
properties  of  perovskites  have  been  applied  in  photoacous-
tic  transducers,  which can transfer  light  signals  to  ultrasound
pulses,  and  are  applied  in  biomedical  imaging,  nondestruct-
ive testing, etc.[19].  Photoacoustic transducers possess advant-
ages of high precision, fast response and simple device struc-
ture  compared  to  traditional  piezoelectric  ultrasound  trans-
ducers, which consist of a mass of cabling and suffer from elec-
tromagnetic  interference.  Normally,  photoacoustic  trans-
ducers  consist  of  thermal  expansion  materials  like  PDMS  and
light absorption materials (e.g., carbon nanotubes, carbon nan-
ofibers  and  perovskites)[9, 20, 21].  With  the  advantages  of  low
heat  capacity  and  high  light  absorption  coefficient  of  CNTs,
the  bandwidth  of  CNTs-based  photoacoustic  transducers  is
much  smaller  than  that  of  traditional  transducers[20].  Per-
ovskites  with  low  specific  heat  capacity  (~308  J/(kg·K))  and
thermal diffusion coefficient (0.145 mm2/s) can promise an ef-
fective  thermal  conduction  with  PDMS  for  high  photoacous-
tic  conversion  efficiency[9].  Recently,  Niu et  al.  combined
MAPbI3 with  PDMS  to  make  a  photoacoustic  transducer  with
high an acoustic pressure of 24.89 MPa and a record high –6 dB
bandwidth of 40.8 MHz, and demonstrated an ultrasound ima-
ging  application  under  water  by  coating  MAPbI3 on  fibers
(Figs. 1(e) and 1(f))[9].
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In  short,  perovskites  find  some  new  applications  in
computing[7, 15, 16],  communication[8, 9, 22],  biomimetic  reti-
na[14, 23, 24],  fingerprint  recognition[25],  etc.  This  article  gives
inspiration to researchers for further exploring perovskite ma-
terials. 
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Fig. 1. (Color online) (a) Schematic of the synapse device based on CsPbBr3 QDs. (b) Current modulation of CsPbBr3 QDs-based synaptic device un-
der the train of photonic pulses and negative electrical pulses. (c) Schematic of the light-emitting memory device. (d) Dual functions of CsPbBr3

QDs-based device as both light-emitting electrochemical cell and resistive random-access memory by changing the bias direction. (e) High-resolu-
tion ultrasound imaging system based on fiber/perovskite device, where L,  FC, MMF, SMF, FOH, DAQ represent lens,  fiber coupler,  multimode
fiber,  single-mode  fiber,  fiber-optic  hydrophone  and  data  acquisition  card,  respectively.  (f)  Ultrasonic  imaging  of  fisheye  based  on  fiber/per-
ovskite device. (a) and (b), reproduced with permission[7]. Copyright 2018, Wiley-VCH. (c) and (d), reproduced with permission[8]. Copyright 2021,
Springer Nature. (e) and (f), reproduced with permission[9]. Copyright 2021, Springer Nature.
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